Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Emerg Microbes Infect ; : 1-73, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2237644

ABSTRACT

How much the vaccine contributes to the induction and development of neutralizing antibodies (NAbs) of breakthrough cases relative to those unvaccinated-infected cases is not fully understood. We conducted a prospective cohort study and collected serum samples from 576 individuals who were diagnosed with SARS-CoV-2 Delta strain infection, including 245 breakthrough cases and 331 unvaccinated-infected cases. NAbs were analyzed by live virus microneutralization test and transformation of NAb titer. NAbs titers against SARS-CoV-2 ancestral and Delta variant in breakthrough cases were 7.8-fold and 4.0-fold higher than in unvaccinated-infected cases, respectively. NAbs titers in breakthrough cases peaked at the second week after onset/infection. However, the NAbs titers in the unvaccinated-infected cases reached their highest levels during the third week. Compared to those with higher levels of NAbs, those with lower levels of NAbs had no difference in viral clearance duration time (P>0.05), did exhibit higher viral load at the beginning of infection/maximum viral load of infection. NAb levels were statistically higher in the moderate cases than in the mild cases (P<0.0001). Notably, in breakthrough cases, NAb levels were highest longer than 4 months after vaccination (Delta strain: 53118.2 U/mL), and lowest in breakthrough cases shorter than 1 month (Delta strain: 7551.2 U/mL). Cross-neutralization against the ancestral strain and the current circulating isolate (Omicron BA.5) was significantly lower than against the Delta variant in both breakthrough cases and unvaccinated-infected cases. Our study demonstrated that vaccination could induce immune responses more rapidly and greater which could be effective in controlling SARS-CoV-2.

2.
Front Immunol ; 14: 1083523, 2023.
Article in English | MEDLINE | ID: covidwho-2235660

ABSTRACT

Background: The quantitative level and kinetics of neutralizing antibodies (NAbs) in individuals with Omicron breakthrough infections may differ from those of vaccinated individuals without infection. Therefore, we aimed to evaluate the difference in NAb levels to distinguish the breakthrough cases from the post-immunized population to identify early infected person in an outbreak epidemic when nasal and/or pharyngeal swab nucleic acid real-time PCR results were negative. Methods: We collected 1077 serum samples from 877 individuals, including 189 with Omicron BA.2 breakthrough infection and 688 post-immunized participants. NAb titers were detected using the surrogate virus neutralization test, and were log(2)-transformed to normalize prior to analysis using Student's unpaired t-tests. Geometric mean titers (GMT) were calculated with 95% confidence intervals (CI). Linear regression models were used to identify factors associated with NAb levels. We further conducted ROC curve analysis to evaluate the NAbs' ability to identify breakthrough infected individuals in the vaccinated population. Results: The breakthrough infection group had a consistently higher NAb levels than the post-immunized group according to time since the last vaccination. NAb titers in the breakthrough infection group were 6.4-fold higher than those in the post-immunized group (GMT: 40.72 AU/mL and 6.38 AU/mL, respectively; p<0.0001). In the breakthrough infection group, the NAbs in the convalescent phase were 10.9-fold higher than in the acute phase (GMT: 200.48 AU/mL and 18.46 AU/mL, respectively; p<0.0001). In addition, the time since infection, booster vaccination, and the time since last vaccination were associated with log(2)-transformed NAb levels in the breakthrough infection group. ROC curve analysis showed that ROC area was largest (0.728) when the cut-off value of log(2)-transformed NAb was 6, which indicated that NAb levels could identify breakthrough infected individuals in the vaccinated population. Conclusion: Our study demonstrates that the NAb titers of Omicron BA.2 variant breakthrough cases are higher than in the post-immunized group. The difference in NAb levels could be used to identify cases of breakthrough infection from the post-immunized population in an outbreak epidemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Kinetics , COVID-19/prevention & control , Antibodies, Viral , Vaccination , Antibodies, Neutralizing , Breakthrough Infections
3.
Emerg Microbes Infect ; 11(1): 1524-1536, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1860763

ABSTRACT

The waning humoral immunity and emerging contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants resulted in the necessity of the booster vaccination of coronavirus disease 2019 (COVID-19). The inactivated vaccine, CoronaVac, is the most widely supplied COVID-19 vaccine globally. Whether the CoronaVac booster elicited adaptive responses that cross-recognize SARS-CoV-2 variants of concern (VoCs) among 77 healthy subjects receiving the third dose of CoronaVac were explored. After the boost, remarkable elevated spike-specific IgG and IgA responses, as well as boosted neutralization activities, were observed, despite 3.0-fold and 5.9-fold reduced neutralization activities against Delta and Omicron strains compared to that of the ancestral strain. Furthermore, the booster dose induced potent B cells and memory B cells that cross-bound receptor-binding domain (RBD) proteins derived from VoCs, while Delta and Omicron RBD-specific memory B cell recognitions were reduced by 2.7-fold and 4.2-fold compared to that of ancestral strain, respectively. Consistently, spike-specific circulating follicular helper T cells (cTfh) significantly increased and remained stable after the boost, with a predominant expansion towards cTfh17 subpopulations. Moreover, SARS-CoV-2-specific CD4+ and CD8+ T cells peaked and sustained after the booster. Notably, CD4+ and CD8+ T cell recognition of VoC spike was largely preserved compared to the ancestral strain. Individuals without generating Delta or Omicron neutralization activities had comparable levels of CD4+ and CD8+ T cells responses as those with detectable neutralizing activities. Our study demonstrated that the CoronaVac booster induced broad and potent adaptive immune responses that could be effective in controlling SARS-CoV-2 Delta and Omicron variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity, Humoral , Vaccination
4.
J Infect Public Health ; 15(3): 297-306, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1734754

ABSTRACT

BACKGROUND: Understanding the transmissibility and pathogenicity of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for control policies, but evidence remains limited. METHODS: We presented a systematic and meta-analytic summary concerning the transmissibility and pathogenicity of COVID-19. RESULTS: A total of 105 studies were identified, with 35042 infected cases and 897912 close contacts. 48.6% (51/105) of studies on secondary transmissions were from China. We estimated a total SIR of 7.8% (95% confidence interval [CI], 6.8%-8.8%), SAR of 6.6% (95% CI, 5.7%-7.5%), and symptomatic infection ratio of 86.9% (95%CI, 83.9%-89.9%) with a disease series interval of 5.84 (95%CI, 4.92-6.94) days. Household contacts had a higher risk of both symptomatic and asymptomatic infection, and transmission was driven between index cases and second-generation cases, with little transmission occurring in second-to-later-generation cases (SIR, 12.4% vs. 3.6%). The symptomatic infection ratio was not significantly different in terms of infection time, generation, type of contact, and index cases. CONCLUSIONS: Our results suggest a higher risk of infection among household contacts. Transmissibility decreased with generations during the intervention. Pathogenicity of SARS-CoV-2 varied among territories, but didn't change over time. Strict isolation and medical observation measures should be implemented.


Subject(s)
COVID-19 , SARS-CoV-2 , Asymptomatic Infections/epidemiology , COVID-19/epidemiology , Contact Tracing , Family Characteristics , Humans , Incidence , Virulence
5.
Front Immunol ; 13: 829665, 2022.
Article in English | MEDLINE | ID: covidwho-1686487

ABSTRACT

Background: Understanding the long-term kinetic characteristics of SARS-CoV-2 antibodies and the impact of inactivated vaccines on SARS-CoV-2 antibodies in convalescent patients can provide information for developing and improving vaccination strategies in such populations. Methods: In this cohort, 402 convalescent patients who tested positive for SARS-CoV-2 by RT-PCR from 1 January to 22 June 2020 in Jiangsu, China, were enrolled. The epidemiological data included demographics, symptom onset, and vaccination history. Blood samples were collected and tested for antibody levels of specific IgG, IgM, RBD-IgG, S-IgG, and neutralizing antibodies using a the commercial magnetic chemiluminescence enzyme immunoassay. Results: The median follow-up time after symptom onset was 15.6 months (IQR, 14.6 to 15.8). Of the 402 convalescent patients, 44 (13.84%) received an inactivated vaccine against COVID-19. A total of 255 (80.19%) patients were IgG-positive and 65 (20.44%) were IgM-positive. The neutralizing antibody was 83.02%. Compared with non-vaccinated individuals, the IgG antibody levels in vaccinated people were higher (P=0.007). Similarly, antibody levels for RBD-IgG, S-IgG, and neutralizing antibodies were all highly increased in vaccinated individuals (P<0.05). IgG levels were significantly higher after vaccination than before vaccination in the same population. IgG levels in those who received 'single dose and ≥14d' were similar to those with two doses (P>0.05). Similar conclusions were drawn for RBD-IgG and the neutralizing antibody. Conclusion: 15.6 months after symptom onset, the majority of participants remained positive for serum-specific IgG, RBD-IgG, S-IgG, and neutralizing antibodies. For convalescent patients, a single dose of inactivated vaccine against COVID-19 can further boost antibody titres.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Child , China , Cohort Studies , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Middle Aged , SARS-CoV-2/immunology , Vaccines, Inactivated/immunology , Young Adult
6.
Front Public Health ; 9: 726690, 2021.
Article in English | MEDLINE | ID: covidwho-1643551

ABSTRACT

This study aimed to assess the cost-effectiveness of various public health measures in dealing with coronavirus disease 2019 (COVID-19) in China. A stochastic agent-based model was used to simulate the progress of the COVID-19 outbreak in scenario I (imported one case) and scenario II (imported four cases) with a series of public health measures. The main outcomes included the avoided infections and incremental cost-effectiveness ratios (ICERs). Sensitivity analyses were performed to assess uncertainty. The results indicated that isolation-and-quarantine averted the COVID-19 outbreak at the lowest ICERs. The joint strategy of personal protection and isolation-and-quarantine averted one more case than only isolation-and-quarantine with additional costs. The effectiveness of isolation-and-quarantine decreased with lowering quarantine probability and increasing delay time. The strategy that included community containment would be cost-effective when the number of imported cases was >65, or the delay time of the quarantine was more than 5 days, or the quarantine probability was below 25%, based on current assumptions. In conclusion, isolation-and-quarantine was the most cost-effective intervention. However, personal protection combined with isolation-and-quarantine was the optimal strategy for averting more cases. The community containment could be more cost-effective as the efficiency of isolation-and-quarantine drops and the imported cases increases.


Subject(s)
COVID-19 , China/epidemiology , Cost-Benefit Analysis , Humans , Public Health , SARS-CoV-2
7.
Frontiers in public health ; 9, 2021.
Article in English | EuropePMC | ID: covidwho-1610555

ABSTRACT

Background: At present, the global sever acute respiratory syndrome coronavirus 2 (SARS-CoV-2) situation is still grim, and the risk of local outbreaks caused by imported viruses is high. Therefore, it is necessary to monitor the genomic variation and genetic evolution characteristics of SARS-CoV-2. The main purpose of this study was to detect the entry of different SARS-CoV-2 variants into Jiangsu Province, China. Methods: First, oropharyngeal swabs were collected from 165 patients (55 locally confirmed cases and 110 imported cases with confirmed and asymptomatic infection) diagnosed with SARS-CoV-2 infection in Jiangsu Province, China between January 2020 and June 2021. Then, whole genome sequencing was used to explore the phylogeny and find potential mutations in genes of the SARS-CoV-2. Last, association analysis among clinical characteristics and SARS-CoV-2 Variant of Concern, pedigree surveillance analysis of SARS-COV-2, and single nucleotide polymorphisms (SNPs) detection in SARS-COV-2 samples was performed. Results: More men were infected with the SARS-CoV-2 when compared with women. The onset of the SARS-CoV-2 showed a trend of younger age. Moreover, the number of asymptomatic infected patients was large, similar to the number of common patients. Patients infected with Alpha (50%) and Beta (90%) variants were predominantly asymptomatic, while patients infected with Delta (17%) variant presented severe clinical features. A total of 935 SNPs were detected in 165 SARS-COV-2 samples. Among which, missense mutation (58%) was the dominant mutation type. About 56% of SNPs changes occurred in the open reading frame 1ab (ORF1ab) gene. Approximately, 20% of SNP changes occurred in spike glycoprotein (S) gene, such as p.Asp501Tyr, p.Pro681His, and p.Pro681Arg. In total, nine SNPs loci in S gene were significantly correlated with the severity of patients. It is worth mentioning that amino acid substitution of p.Asp614Gly was significantly positively correlated with the clinical severity of patients. The amino acid replacements of p.Ser316Thr and p.Lu484Lys were significantly negatively correlated with the course of disease. Conclusion: Sever acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may further undergo a variety of mutations in different hosts, countries, and weather conditions. Detecting the entry of different virus variants of SARS-CoV-2 into Jiangsu Province, China may help to monitor the spread of infection and the diversity of eventual recombination or genomic mutations.

8.
Open Forum Infect Dis ; 7(5): ofaa134, 2020 May.
Article in English | MEDLINE | ID: covidwho-1455337

ABSTRACT

From October to December 2018, periodic bioaerosol sampling was conducted at a live bird market in Kunshan, China. Sixty-six (55%) of 120 samples had molecular evidence of avian influenza viruses. Four yielded live H9N2 virus after egg culture.

9.
Microbiol Spectr ; 9(2): e0059021, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1434909

ABSTRACT

To assess the persistence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies produced by natural infection and describe the serological characteristics over 7 months after symptom onset among coronavirus disease 2019 (COVID-19) patients by age and severity group, we followed up COVID-19 convalescent patients confirmed from 1 January to 20 March 2020 in Jiangsu, China and collected serum samples for testing IgM/IgG and neutralizing antibodies against SARS-CoV-2 between 26 August and 28 October 2020. In total, 284 recovered participants with COVID-19 were enrolled in our study. Patients had a mean age of 46.72 years (standard deviation [SD], 17.09), and 138 (48.59%) were male. The median follow-up time after symptom onset was 225.5 (interquartile range [IQR], 219 to 232) days. During the follow-up period (162 to 282 days after symptom onset), the seropositive rate of IgM fluctuated around 25.70% (95% confidence interval [CI], 20.72% to 31.20%) and that of IgG fluctuated around 79.93% (95% CI, 74.79% to 84.43%). Of the 284 patients, 64 participants were tested when discharged from hospital. Compared with that at the acute phase, the IgM/IgG antibody levels and IgM seropositivity have decreased; however, the seropositivity of IgG was not significantly lower at this follow-up (78.13% versus 82.81%). Fifty percent inhibitory dilution (ID50) titers of neutralizing antibody for samples when discharged from hospital (geometric mean titer [GMT], 82; 95% CI, 56 to 121) were significantly higher than those at 6 to 7 months after discharge (GMT, 47; 95% CI, 35 to 63) (P < 0.001). After 7 months from symptom onset, the convalescent COVID-19 patients continued to have high IgG seropositive; however, many plasma samples decreased neutralizing activity. IMPORTANCE The long-term characteristics of anti-SARS-CoV-2 antibodies among COVID-19 patients remain largely unclear. Tracking the longevity of these antibodies can provide a forward-looking reference for monitoring COVID-19. We conducted a comprehensive assessment combining the kinetics of specific and neutralizing antibodies over 7 months with age and disease severity and revealed influencing factors of the protection period of convalescent patients. By observing the long-term antibody levels against SARS-CoV-2 and comparing antibody levels at two time points after symptom onset, we found that the convalescent COVID-19 patients continued to have a high IgG seropositive rate; however, their plasma samples decreased neutralizing activity. These findings provide evidence supporting that the neutralizing activity of SARS-CoV-2-infected persons should be monitored and the administration of vaccine may be needed.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , SARS-CoV-2/immunology , Adolescent , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Child , Female , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Immunologic Memory/immunology , Male , Middle Aged , Young Adult
10.
Parasit Vectors ; 14(1): 483, 2021 Sep 19.
Article in English | MEDLINE | ID: covidwho-1430472

ABSTRACT

BACKGROUND: During the period of the coronavirus disease 2019 (COVID-19) outbreak, strong intervention measures, such as lockdown, travel restriction, and suspension of work and production, may have curbed the spread of other infectious diseases, including natural focal diseases. In this study, we aimed to study the impact of COVID-19 prevention and control measures on the reported incidence of natural focal diseases (brucellosis, malaria, hemorrhagic fever with renal syndrome [HFRS], dengue, severe fever with thrombocytopenia syndrome [SFTS], rabies, tsutsugamushi and Japanese encephalitis [JE]). METHODS: The data on daily COVID-19 confirmed cases and natural focal disease cases were collected from Jiangsu Provincial Center for Disease Control and Prevention (Jiangsu Provincial CDC). We described and compared the difference between the incidence in 2020 and the incidence in 2015-2019 in four aspects: trend in reported incidence, age, sex, and urban and rural distribution. An autoregressive integrated moving average (ARIMA) (p, d, q) × (P, D, Q)s model was adopted for natural focal diseases, malaria and severe fever with thrombocytopenia syndrome (SFTS), and an ARIMA (p, d, q) model was adopted for dengue. Nonparametric tests were used to compare the reported and the predicted incidence in 2020, the incidence in 2020 and the previous 4 years, and the difference between the duration from illness onset date to diagnosed date (DID) in 2020 and in the previous 4 years. The determination coefficient (R2) was used to evaluate the goodness of fit of the model simulation. RESULTS: Natural focal diseases in Jiangsu Province showed a long-term seasonal trend. The reported incidence of natural focal diseases, malaria and dengue in 2020 was lower than the predicted incidence, and the difference was statistically significant (P < 0.05). The reported incidence of brucellosis in July, August, October and November 2020, and SFTS in May to November 2020 was higher than that in the same period in the previous 4 years (P < 0.05). The reported incidence of malaria in April to December 2020, HFRS in March, May and December 2020, and dengue in July to November 2020 was lower than that in the same period in the previous 4 years (P < 0.05). In males, the reported incidence of malaria in 2020 was lower than that in the previous 4 years, and the reported incidence of dengue in 2020 was lower than that in 2017-2019. The reported incidence of malaria in the 20-60-year age group was lower than that in the previous 4 years; the reported incidence of dengue in the 40-60-year age group was lower than that in 2016-2018. The reported cases of malaria in both urban and rural areas were lower than in the previous 4 years. The DID of brucellosis and SFTS in 2020 was shorter than that in 2015-2018; the DID of tsutsugamushi in 2020 was shorter than that in the previous 4 years. CONCLUSIONS: Interventions for COVID-19 may help control the epidemics of natural focal diseases in Jiangsu Province. The reported incidence of natural focal diseases, especially malaria and dengue, decreased during the outbreak of COVID-19 in 2020. COVID-19 prevention and control measures had the greatest impact on the reported incidence of natural focal diseases in males and people in the 20-60-year age group.


Subject(s)
Brucellosis/epidemiology , COVID-19/prevention & control , Dengue/epidemiology , Malaria/epidemiology , Adult , Age Distribution , Aged , COVID-19/epidemiology , China/epidemiology , Disease Outbreaks , Female , Humans , Incidence , Male , Middle Aged , Physical Distancing , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Travel/statistics & numerical data , Young Adult
11.
Med Sci Monit ; 27: e929986, 2021 Apr 17.
Article in English | MEDLINE | ID: covidwho-1148369

ABSTRACT

BACKGROUND This retrospective study aimed to investigate the factors associated with disease severity and patient outcomes in 631 patients with COVID-19 who were reported to the Jiangsu Commission of Health between January 1 and March 20, 2020. MATERIAL AND METHODS We conducted an epidemiological investigation enrolling 631 patients with laboratory-confirmed COVID-19 from our clinic from January to March 2020. Patients' information was collected through a standard questionnaire. Then, we described the patients' epidemiological characteristics, analyzed risk factors associated with disease severity, and assessed causes of zero mortality. Additionally, some key technologies for epidemic prevention and control were identified. RESULTS Of the 631 patients, 8.46% (n=53) were severe cases, and no deaths were recorded (n=0). The epidemic of COVID-19 has gone through 4 stages: a sporadic phase, an exponential growth phase, a peak plateau phase, and a declining phase. The proportion of severe cases was significantly different among the 4 stages and 13 municipal prefectures (P<0.001). Factors including age >65 years old, underlying medical conditions, highest fever >39.0°C, dyspnea, and lymphocytopenia (<1.0×109/L) were early warning signs of disease severity (P<0.05). In contrast, earlier clinic visits were associated with better patient outcomes (P=0.029). Further, the viral load was a potentially useful marker associated with COVID-19 infection severity. CONCLUSIONS The study findings from the beginning of the COVID-19 epidemic in Jiangsu Province, China showed that patients who were more than 65 years of age and with comorbidities and presented with a fever of more than 39.0°C developed more severe disease. However, mortality was prevented in this initial patient population by early supportive clinical management.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2 , Adult , Aged , COVID-19/diagnosis , COVID-19/history , COVID-19/virology , China/epidemiology , Comorbidity , Female , Geography, Medical , History, 21st Century , Humans , Male , Middle Aged , Mortality , Open Reading Frames , Population Surveillance , RNA, Viral , Real-Time Polymerase Chain Reaction , Risk Factors , SARS-CoV-2/classification , SARS-CoV-2/genetics , Seasons , Severity of Illness Index , Viral Load
12.
Epidemiol Infect ; 149: e48, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-1129262

ABSTRACT

To understand the characteristics and influencing factors related to cluster infections in Jiangsu Province, China, we investigated case reports to explore transmission dynamics and influencing factors of scales of cluster infection. The effectiveness of interventions was assessed by changes in the time-dependent reproductive number (Rt). From 25th January to 29th February, Jiangsu Province reported a total of 134 clusters involving 617 cases. Household clusters accounted for 79.85% of the total. The time interval from onset to report of index cases was 8 days, which was longer than that of secondary cases (4 days) (χ2 = 22.763, P < 0.001) and had a relationship with the number of secondary cases (the correlation coefficient (r) = 0.193, P = 0.040). The average interval from onset to report was different between family cluster cases (4 days) and community cluster cases (7 days) (χ2 = 28.072, P < 0.001). The average time interval from onset to isolation of patients with secondary infection (5 days) was longer than that of patients without secondary infection (3 days) (F = 9.761, P = 0.002). Asymptomatic patients and non-familial clusters had impacts on the size of the clusters. The average reduction in the Rt value in family clusters (26.00%, 0.26 ± 0.22) was lower than that in other clusters (37.00%, 0.37 ± 0.26) (F = 4.400, P = 0.039). Early detection of asymptomatic patients and early reports of non-family clusters can effectively weaken cluster infections.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/virology , Child , Child, Preschool , China/epidemiology , Cluster Analysis , Female , Humans , Infant , Male , Middle Aged , Young Adult
13.
Fundamental Research ; 2021.
Article in English | ScienceDirect | ID: covidwho-1065086

ABSTRACT

The global pandemic of 2019 coronavirus disease (COVID-19) is a great assault to public health. Presymptomatic transmission cannot be controlled with measures designed for symptomatic persons, such as isolation. This study aimed to estimate the interval of the transmission generation (TG) and the presymptomatic period of COVID-19, and compare the fitting effects of TG and serial interval (SI) based on the SEIHR model incorporating the surveillance data of 3453 cases in 31 provinces. These data were allocated into three distributions and the value of AIC presented that the Weibull distribution fitted well. The mean of TG was 5.2 days (95% CI: 4.6-5.8). The mean of the presymptomatic period was 2.4 days (95% CI: 1.5-3.2). The dynamic model using TG as the generation time performed well. Eight provinces exhibited a basic reproduction number from 2.16 to 3.14. Measures should be taken to control presymptomatic transmission in the COVID-19 pandemic.

14.
Infect Dis Poverty ; 9(1): 109, 2020 Aug 10.
Article in English | MEDLINE | ID: covidwho-707202

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) epidemic met coincidentally with massive migration before Lunar New Year in China in early 2020. This study is to investigate the relationship between the massive migration and the coronavirus disease 2019 (COVID-19) epidemic in China. METHODS: The epidemic data between January 25th and February 15th and migration data between Jan 1st and Jan 24th were collected from the official websites. Using the R package WGCNA, we established a scale-free network of the selected cities. Correlation analysis was applied to describe the correlation between the Spring Migration and COVID-19 epidemic. RESULTS: The epidemic seriousness in Hubei (except the city of Wuhan) was closely correlated with the migration from Wuhan between January 10 and January 24, 2020. The epidemic seriousness in the other provinces, municipalities and autonomous regions was largely affected by the immigration from Wuhan. By establishing a scale-free network of the regions, we divided the regions into two modules. The regions in the brown module consisted of three municipalities, nine provincial capitals and other 12 cities. The COVID-19 epidemics in these regions were more likely to be aggravated by migration. CONCLUSIONS: The migration from Wuhan could partly explain the epidemic seriousness in Hubei Province and other regions. The scale-free network we have established can better evaluate the epidemic. Three municipalities (Beijing, Shanghai and Tianjin), eight provincial capitals (including Nanjing, Changsha et al.) and 12 other cities (including Qingdao, Zhongshan, Shenzhen et al.) were hub cities in the spread of COVID-19 in China.


Subject(s)
Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Travel , Betacoronavirus , COVID-19 , China/epidemiology , Coronavirus Infections/transmission , Emigration and Immigration/statistics & numerical data , Epidemics/statistics & numerical data , Humans , Pandemics , Pneumonia, Viral/transmission , SARS-CoV-2 , Travel/statistics & numerical data
15.
Transbound Emerg Dis ; 68(2): 773-781, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-690269

ABSTRACT

We investigated an outbreak of COVID-19 infection, which was traced back to a bathing pool at an entertainment venue, to explore the epidemiology of the outbreak, understand the transmissibility of the virus and analyse the influencing factors. Contact investigation and management were conducted to identify potential cases. Epidemiological investigation was carried out to determine the epidemiological and demographic characteristics of the outbreak. We estimated the secondary attack rate (SAR), incubation time and time-dependent reproductive number (Rt ) and explored the predisposing factors for cluster infection. The incubation time was 5.4 days and the serial interval (SI) was 4.4 days, with the rate of negative-valued SIs at 24.5%. The SAR at the bathing pool (3.3%) was relatively low due to its high temperature and humidity. The SAR was higher in the colleagues' cluster (20.5%) than in the family cluster (11.8%). Super-spreaders had a longer isolation delay time (p = .004). The Rt of the cluster decreased from the highest value of 3.88 on January 27, 2020 to 1.22 on February 6. Our findings suggest that the predisposing factors of the outbreak included close contact with an infected person, airtight and crowded spaces, temperature and humidity in the space and untimely isolation of patients and quarantine of contacts at the early stage of transmission. Measures to reduce the risk of infection at these gatherings and subsequent tracking of close contacts were effective.


Subject(s)
COVID-19/diagnosis , Disease Outbreaks , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/transmission , Child , Child, Preschool , China/epidemiology , Contact Tracing , Disease Transmission, Infectious , Female , Humans , Infant , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL